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Abstract—Betti’s reciprocal theorem is used to derive integral equations for problems involving an

axisymmetric fiat toroidal crack. Numerical estimates for stress intensity factors in fracture mechanics are

improved by use of the M-integral conservation law. Stress intensity factors for torsion and uniform

tension are given.

1. INTRODUCTION

For elastic problems involving an axisymmetric crack, a powerful method of approach is the
use of integral transforms, such as the Hankel transform, which usually converts the boundary
value problem into the solution of integral equations[1). Although the method of the solution
involves elaborate mathematical manipulation, for some simple problems the final expressions
for physically meaningful quantities are elementary. The purpose of this paper is to illustrate an
alternate approach which was used by Shield[2] to find surface values for indentation problems.
In this method Betti’s reciprocal theorem leads to integral equations for physically meaningful
quantities. Although we need auxiliary solutions, the mathematical manipulations are relatively
clementary.

In engineering practice a curved crack such as a banana-shaped crack is frequently
encountered. The stress intensity factors at the midpoints of the crack can be estimated by the
stress intensity factors of a flat toroidal crack.

In Section 2 we give Betti’s reciprocal theorem and the conservation laws for future use.
The torsion of an external crack covering the outside of a circle is considered in Section 3. By
use of Betti’s reciprocal theorem the stress intensity factor is found, in agreement with the
existing solution. We next consider a flat toroidal crack and for this problem a Fredholm
integral equation of the second kind is derived. The M-integral is used to improve the accuracy
of the numerical solution for the stress intensity factors. In Section 4 we treat the application of
pressure on the surfaces of a flat toroidal crack. Numerical results are obtained for uniform
pressure and compared with previous results.

2. BASIC FORMULAE
Consider two displacement fields u, ¥ associated with equilibrium states of the body. It is
-assumed that the fields are smooth enough that Betti’s reciprocal theorem holds, which for zero
body force gives

I Tu;dS= I Tw; dsS, 2.1
s s

where a repeated index implies summation over the range 1-3, S is the boundary surface of the
body and T}, T are the surface tractions associated with u, «), respectively. For infinite bodies
we supp:)’:e that u are O(1/p) and the stress components 7, are O(1/p?) as p—» where
p=(xx)".

Conservation laws for homogeneous elastic bodies were derived by Eshelby[3] and ad-
ditional laws were established by Giinther[4] (see also [5]). Let A be the boundary of a regular
subregion of the body with the outward normal »; then

5= [ (W~ T ds =o,
2.2)
M= L (Wxin; — Taayx — 4 Ti) dS =0,
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where W denotes the strain-energy density. For a crack under combined loading of plane strain
and antiplane shear we take the crack face to be in the x,-direction. Then the contribution to J,
per unit length parallel to the crack from a vanishingly small- path whicli begins on one crack
face, surrounds the crack tip, and terminates on the opposite face is +J where

J= -21’;{(1 — o)k + kD) + kit 2.3)

is Rice’s integral of fracture mechanics{6] and the algebraic sign is determined from the details
of the problem. In (2.3) k; denote the stress intensity factors (see (3.9) below for their definition)
and u, v are the shear modulus and Poisson’s ratio, respectively.

3. AXISYMMETRIC TORSION OF A FLAT TOROIDAL CRACK
We first consider an external crack covering the outside of a circle of radius 4 in an infinite
elastic body. The crack surface is subjected to an axisymmetric distribution of tangential
traction. With a cylindrical coordinate system (r, 6, z), a solution exists for which u, and u;
vanish and u, is independent of 8. The boundary conditions are

10 =—7(r) forr>a, z=0,

Uy =0 for0<r=a z=0, 3.hH
where 7(r) is a known function. The twisting moment produced by the traction (r) is assumed
to be finite. Because of the symmetry of the geometry and the boundary conditions it is

sufficient to consider the lower half space z=<0. For the application of Betti’s reciprocal
theorem, consider the Reissner-Sagoci problem

up=r for0=sr=t z=0,

3.2)
=0 forr>t 2=0,
which results in surface values[7]
. Aur _
7,,—7—7-(?-5??71 forO0=r<t z=0, -

w=2[rsint (£)-L2-oy2] torr> 220,

We apply the reciprocal theorem (2.1) to the fields in z <0 satisfying the boundary conditions
(3.1)-(3.3). Then we have for 0=t<a

J” rzdr+—2—rr [rsin""'(i)—i(rl—tz)”’]rdr
0 Tzp ), 26 r r

——27;}': 'r(r)[rsin"(—t;)—-é("z"fz)m}"d’ =0 (34

and fort>a
a ! - . 4u [ r’
fo Tl dr——L " dr-»%J: 'r(r)[r sin™! (%)*%(rz— tz)m]rdr=-£'L W%"?‘ymdr.
3.5)
If we differentiate (3.4) with respect to f, we obtain for t <a
f T dr= j ) 3.6)
, (F= . (F=H7

Equation (3.6), which holds for ¢ < a, is an Abel integral equation for 7, and the solution is
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straightforward. We have for r<a, z=0

- 112
s I 2 Hs)ds. X)

The torque M, transmitted through the neck is found to be
M, =27 r Terdr=4 I. -r(r)[r sin”! (9-) -4r- a’)"’]rdr. (3.8)
0 a r r
The stress intensity factor k; is
172 [
k3 = l’\i_'nz [2(a - f)]lnfz. = 2—?’-'— L (;!:TL%)!Sm ds (3.9)

which agrees with the known result[8]. Substituting (3.8) into (3.5) and solving the resulting
equation for u,, we obtain for rza, z=0

=2 £dt [© 1(A)

wur ), —?—_-;Qym (A —f ———dA. (3.10)

For a flat toroidal crack with outer crack radius b, we suppose that 7., is prescribed for
a < r=<b and in addition to u, vanishing for < a on z =0 we require

Uy =

uy=0, forr=b, z=0. 3.11)

We denote the unknown value of 7,4 on z =0 outside r= b by f(r). From (3.10) and (3.11) it
follows that f(r) must be such that

rAdt [ fA b p2de (A) tzdt b )
L(P—:’)"’I, (a’—r%""’“f,. (?—t’)'”f,, ai-mdr= ( #-o"), -
3.12)

Following Cooke[9], we set

_[T_fQ)
F(s)= I k. G3.13)

and then

(A)——;; o I ?’sg(%'” (3.14)

On using (3.13) and (3.14) we can show that eqn (3.12) can be reduced to a Fredholm integral
equation of the second kind

b 322 1 DIR b ®
He - 6)7F( =2 f AG-2) g L (;,j‘—?,;mds—f, L K(t, )F(s)ds for t>b,
(3.15)
where

___S _ 1 _ (¢+bXt—-a) 2 (s+b)s—a)
K(,s) (_sr—_b’f"’[ b+a+§(-?-_—s;5[t(t2 b’)ln(t_ NI Ta) s(s? b’)ln———(s_ DX +a)]}.

(3.16)

Numerical solution of the integral equation (3.15) is not straightforward because of the
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singularity at ¢ = b, We first use the result for a penny-shaped crack[1]

2 pnin 2
f(A)=T[(A Ab) +2A(Azb_bf)]72"‘l], A> b, (317)

where 7 is the constant value of r(r) for r < b. Substituting (3.17) into (3.13), we have for this
case

2
F(s)——41(2 “g+21n 7” ) (3.18)
which suggests that we set
2
F(s) = [ mﬂ-’gnl ——,1] G(s). (3.19)

where G(s) is a bounded function for s = b. Substituting (3.19) into (3.14), we have as A = b
2
fA) = —(—A,”_—G—%’m o). (3.20)
From (3.20) the stress intensity factor &, at the outer tip is found to be

k, = l'i_{rg[Z(r— b'*f(r) = —2b"2G(b). (3.21)

The stress 7,5 for r < a is calculated from (3.7) and (3.14) so that as r~>a

17 "
T .| NN RS

where B = afb. The displacement u, on the crack surface a<r<b, z=0 is obtained from
(3.10) and (3.14)

_ 2 2dt [ «A) 2 [ - 2)”2 > AF(A)
g = mr{ . (P=M), -9 - I - L (A’—bz)‘"(ﬁ~t2)d‘}'
(3.23)

As indicated by (3.19), the solution F(f) of the integral equation (3.15) has a logarithmic
singularity at ¢ = b. One approach is to determine the stress intensity factor k, by numerical
extrapolation, but the accuracy is not high for some values of a/b. It turns out that with this
approach the value of k, in (3.21) is very sensitive to the form assumed for F(f), such as (3.19).
To avoid this difficulty we apply the M-integral in (2.2) to the field by taking A as the union of a
closed surface consisting of the crack surfaces and two toroids with vanishing radii surrounding
the crack tips, and the surface of the sphere at infinity. We obtain

b
b’J, —a%l, = —-J; {3rr(r)+ ZF%%L)} ug dr (3.24)

where J,, J, denote the J-integrals at r = a and r = b. Substituting (3.23) into (3.24), we have

2 (" ar(r Tog2dt [0 7
v, -0t =L [ 3042280 ar [ S | (-;r:-,z;mﬂ

—;}— (T’}ﬂi‘}mm J’ [3T(r)+2r

T(r) tZ(bZ — t2 12
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Since k, and k; vanish, we also have

J, ={;k.’, A =§k.’ (3.26)

and the eqn (3.25) provides the relation between k, and k,. With (3.22) we can now determine
more accurate estimates for k,.
For a numerical example we assume

7= qrb, 327

where ¢ is a constant, which corresponds to torsion of a circular cylinder with an infinitesimal

central crack perpendicular to the axis. The numerical resuits are shown in Fig. 1. As a/b -0, k,
approaches the value

1n

K, = 400"

3n

o6 , y

ks/qv/b

00 1 A I U i P . " A
00 0.5 1.0

a/b
Fig. 1. Stress intensity factor for toroidal crack under torsion
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which is the solution for a penny-shaped crack[8], and as a/b— 1, k, and k, tend to
b - 12
L=k=a("7%)

which is the solution for antiplane shear. It is seen that k, is always greater than k,, so it is to be
expected that if growth of the crack occurs it will be at the outer edge.

We remark that the M-integral has been used by Freund[10] to find stress intensity factors
for plane cracks.

4. APPLICATION OF PRESSURE ON A FLAT TOROIDAL CRACK

For a flat toroidal crack under pressure we use the solution for indentation of a half space
by a circular punch. Apart from a multiplicative constant, surface values are given by

- 2 -
T33_1f(1“l/)(t— ) s Il;—l fOl'r<t,

@.1)

on z =0, where ¢ is the punch radius (see, e.g. {2]). By a similar method to that of the previous
section we can use the reciprocal theorem (2.1) to obtain the known results for an external
crack [11]

(S 2 12
T33 = e )mJ — sp(syds for r<a, z=0,
2(1 ) ) 4.2)
- ~y sp(s _
= I( —t) -;yg—t;ynds forr>a,z=0,
where p(r) denotes the prescribed pressure on the crack surface.
For an annular crack we set
=0, p(r)=-f(r) forr>b,z=0, (4.3)

where f(r) denotes the unknown values of 733 on z=0. Again following the procedure
described in Section 3, we obtain an integral equation

2 21/2 @
F(t)= b’)“’ f (b~ A% dA f T s”(sz)),,,ds—;r‘f, L K(t, s)F(s)ds,  (4.4)
where iy
1 s(t2 = pH)'"? (t+b)(t—a) t(s*— b? (s+b)(s—a)
K(“)“z(z’—s’){(s2 PTG Ta) T (E= B P (s b)(s+a)} “.5)
and
Fls) = [ A (“ 4.6)
so that
_ sF(s)
fay=- md)\[ GI=AH)7! ds. @7
We assume

F(t)=b [% In ;—E—’; - 2] G() 4.8)
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and then

= lim [2(r - b))"*ryy = 26" G(b) 4.9)

and

k, 2”‘”{] F‘;&'%mds——(l — gy J; —Ar—b%%’(‘—;,——,- } 4.10)

The displacement on the crack surface is found to be

o B | 2 S

@.11)
We also have for this case, using the M-integral of (2.2),
_2-»(° ap(n) sp(s)
b, - atl, = w” I [3pp(r)+2r=—{;7] dr f 7_””— o | P mymds
41-v) [ AFQ) b
a2, mﬁm‘“f [sme2
4.12)

+2F—M]dr] T?TTT—T(A d.

Since k; = k; =0, the eqn (4.12) provides the relation between k, and ;.

Numerical results for uniform pressure p are given in Table 1 which compares them with
values given by Smetanin[12] and values provided by expressions given by Moss and
Kobayashi[13). It is seen that the present calculation agrees well with the results of Smetanin
while the agreement with the results of Moss and Kobayashi is poor. Figure 2 shows the stress
intensity factors versus a/b. The maximum mismatch with the asymptotic formulae given by
Smetanin is less than 1%. As we might expect, k, approaches the value of

kb =%pb"2

for a penny-shaped crack and k, - as a/b -0, whereas

k. k. p(bz a)ll2

as a/b - 1. Since k, > k;, growth of the crack under mode I loading would tend to occur at the
inner edge suggesting that an annular crack will develop into a penny-shaped crack. This is in
contrast to the result of the previous section which indicated growth of the crack at the outer
edge under shear induced by torsion.

Table 1. Stress intensity factors for uniform pressure.in a flat toroidal crack

5
k,/pb k,/pb"
a/b

Present | From [12] | From [13]| Present |From [12] |From [13]

0.06948 1.578 1.574 0.863 0.618 0.618 0.618

0.36788 0.693 0.697 0.742 0.525 0.526 0.543
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Fig. 2. Stress intensity factor for toroidal crack under uniform tension
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